当前位置:现金网 > 滚球投注 >

优必选悉尼 AI 研究院博士生:混合比例估计在弱

文章来源: 发布时间2018-06-04 点击数:

原标题:优必选悉尼 AI 研究院博士生:混合比例估计在弱监督学习和迁移学习中的延伸与应用 | 分享总结

雷锋网 AI 科技评论按:在大数据时代,标注足够多的训练样本往往耗费巨大。弱监督学习方法往往能够减轻对正确标签的过度依赖,达到与监督学习相近的性能。然而,在设计弱监督学习方法时,我们需要理解无标签样本的分布情况(比如 semi-supervised learning),或者带噪声标签样本的噪声大小(比如 learning with label noise),这些问题的本质就是混合比例估计。因此,混合比例估计在弱监督学习中占有至关重要的作用。

在雷锋网 (公众号:雷锋网) 旗下学术频道 AI 科技评论的数据库项目「AI 影响因子」中,优必选悉尼 AI 研究院凭借4 篇 CVPR 录用论文、8.2亿美元的C轮融资,AI首席科学家陶大程当选澳大利亚科学院院士的不俗表现,排在「AI 影响因子」前列。

近期,在 GAIR 大讲堂上,优必选悉尼 AI 研究院博士生余席宇分享了他在混合比例估计中新的研究成果,以及其在弱监督学习,迁移学习中的延伸应用。视频回放地址:

余席宇,悉尼大学 FEIT 四年级博士生,优必选悉尼 AI 研究院学生。北京航空航天大学控制科学与工程学士,硕士。主要研究方向为矩阵分解,深度网络模型压缩以及弱监督学习。

分享主题:混合比例估计(Mixture Proportion Estimation)及其应用

分享提纲

混合比例估计的背景,银彩娱乐,问题描述以及基本假设。

利用最大平均差异的方法快速求解混合比例估计问题,并提供理论保证。

混合比例估计应用:辅助领域(source domain)中的样本含有标签噪声时的迁移学习。

以下为雷锋网 AI 科技评论整理的分享内容: